Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Infect Microbiol ; 12: 705647, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35711662

RESUMO

Physical forces associated with spaceflight and spaceflight analogue culture regulate a wide range of physiological responses by both bacterial and mammalian cells that can impact infection. However, our mechanistic understanding of how these environments regulate host-pathogen interactions in humans is poorly understood. Using a spaceflight analogue low fluid shear culture system, we investigated the effect of Low Shear Modeled Microgravity (LSMMG) culture on the colonization of Salmonella Typhimurium in a 3-D biomimetic model of human colonic epithelium containing macrophages. RNA-seq profiling of stationary phase wild type and Δhfq mutant bacteria alone indicated that LSMMG culture induced global changes in gene expression in both strains and that the RNA binding protein Hfq played a significant role in regulating the transcriptional response of the pathogen to LSMMG culture. However, a core set of genes important for adhesion, invasion, and motility were commonly induced in both strains. LSMMG culture enhanced the colonization (adherence, invasion and intracellular survival) of Salmonella in this advanced model of intestinal epithelium using a mechanism that was independent of Hfq. Although S. Typhimurium Δhfq mutants are normally defective for invasion when grown as conventional shaking cultures, LSMMG conditions unexpectedly enabled high levels of colonization by an isogenic Δhfq mutant. In response to infection with either the wild type or mutant, host cells upregulated transcripts involved in inflammation, tissue remodeling, and wound healing during intracellular survival. Interestingly, infection by the Δhfq mutant led to fewer transcriptional differences between LSMMG- and control-infected host cells relative to infection with the wild type strain. This is the first study to investigate the effect of LSMMG culture on the interaction between S. Typhimurium and a 3-D model of human intestinal tissue. These findings advance our understanding of how physical forces can impact the early stages of human enteric salmonellosis.


Assuntos
Biomimética , Voo Espacial , Animais , Técnicas de Cocultura , Interações Hospedeiro-Patógeno , Humanos , Mamíferos , Salmonella typhimurium/genética
2.
J Aquat Anim Health ; 30(4): 332-338, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30352480

RESUMO

Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) is a rapid, cost-effective method for identification of a broad range of bacterial taxa, but its accuracy for Vibrio spp. from samples of aquatic animal origin is unknown. We used DNA sequence analysis targeting two conserved genes, rpoB and rpoD, as the identification standard for 5 reference strains and 35 Vibrio spp. field isolates obtained from diagnostic aquaculture samples. Overall, MALDI-TOF MS correctly identified 100% of the five reference strains to the genus level and 80% (4 of 5) to the species level. For field isolates, 83% (29 of 35) were correctly identified to the genus level, and 49% (17 of 35) were correctly identified to the species level. Eight (23%) field isolates were incorrectly identified at the species level. The MALDI-TOF MS method produced no identification for 17% (6 of 35) of the field isolates. Using traditional culture identification, 100% of the five reference strains were correctly identified to the species level. All 35 field isolates were correctly identified to the genus level; 51% (18 of 35) of the isolates were identified correctly to the species level, while 29% (10 of 35) were misidentified at the species level. Overall, MALDI-TOF MS was comparable to phenotypic identification, and accuracy will likely improve with enhancement of MALDI-TOF MS database robustness.


Assuntos
Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Vibrioses/veterinária , Vibrio/isolamento & purificação , Animais , DNA Bacteriano , Doenças dos Peixes/microbiologia , Peixes , Análise de Sequência de DNA , Vibrio/genética
3.
Infect Immun ; 86(11)2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30181350

RESUMO

Tissues and organs provide the structural and biochemical landscapes upon which microbial pathogens and commensals function to regulate health and disease. While flat two-dimensional (2-D) monolayers composed of a single cell type have provided important insight into understanding host-pathogen interactions and infectious disease mechanisms, these reductionist models lack many essential features present in the native host microenvironment that are known to regulate infection, including three-dimensional (3-D) architecture, multicellular complexity, commensal microbiota, gas exchange and nutrient gradients, and physiologically relevant biomechanical forces (e.g., fluid shear, stretch, compression). A major challenge in tissue engineering for infectious disease research is recreating this dynamic 3-D microenvironment (biological, chemical, and physical/mechanical) to more accurately model the initiation and progression of host-pathogen interactions in the laboratory. Here we review selected 3-D models of human intestinal mucosa, which represent a major portal of entry for infectious pathogens and an important niche for commensal microbiota. We highlight seminal studies that have used these models to interrogate host-pathogen interactions and infectious disease mechanisms, and we present this literature in the appropriate historical context. Models discussed include 3-D organotypic cultures engineered in the rotating wall vessel (RWV) bioreactor, extracellular matrix (ECM)-embedded/organoid models, and organ-on-a-chip (OAC) models. Collectively, these technologies provide a more physiologically relevant and predictive framework for investigating infectious disease mechanisms and antimicrobial therapies at the intersection of the host, microbe, and their local microenvironments.


Assuntos
Microambiente Celular , Interações Hospedeiro-Patógeno , Mucosa Intestinal/fisiologia , Técnicas de Cultura de Órgãos/métodos , Organoides , Engenharia Tecidual/métodos , História do Século XX , História do Século XXI , Humanos , Modelos Biológicos , Técnicas de Cultura de Órgãos/história , Engenharia Tecidual/história
4.
NPJ Microgravity ; 3: 10, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28649632

RESUMO

Three-dimensional models of human intestinal epithelium mimic the differentiated form and function of parental tissues often not exhibited by two-dimensional monolayers and respond to Salmonella in key ways that reflect in vivo infections. To further enhance the physiological relevance of three-dimensional models to more closely approximate in vivo intestinal microenvironments encountered by Salmonella, we developed and validated a novel three-dimensional co-culture infection model of colonic epithelial cells and macrophages using the NASA Rotating Wall Vessel bioreactor. First, U937 cells were activated upon collagen-coated scaffolds. HT-29 epithelial cells were then added and the three-dimensional model was cultured in the bioreactor until optimal differentiation was reached, as assessed by immunohistochemical profiling and bead uptake assays. The new co-culture model exhibited in vivo-like structural and phenotypic characteristics, including three-dimensional architecture, apical-basolateral polarity, well-formed tight/adherens junctions, mucin, multiple epithelial cell types, and functional macrophages. Phagocytic activity of macrophages was confirmed by uptake of inert, bacteria-sized beads. Contribution of macrophages to infection was assessed by colonization studies of Salmonella pathovars with different host adaptations and disease phenotypes (Typhimurium ST19 strain SL1344 and ST313 strain D23580; Typhi Ty2). In addition, Salmonella were cultured aerobically or microaerobically, recapitulating environments encountered prior to and during intestinal infection, respectively. All Salmonella strains exhibited decreased colonization in co-culture (HT-29-U937) relative to epithelial (HT-29) models, indicating antimicrobial function of macrophages. Interestingly, D23580 exhibited enhanced replication/survival in both models following invasion. Pathovar-specific differences in colonization and intracellular co-localization patterns were observed. These findings emphasize the power of incorporating a series of related three-dimensional models within a study to identify microenvironmental factors important for regulating infection.

5.
Artigo em Inglês | MEDLINE | ID: mdl-24478989

RESUMO

Vibrio parahaemolyticus is an emerging bacterial pathogen capable of causing inflammatory gastroenteritis, wound infections, and septicemia. As a food-borne illness, infection is most frequently associated with the consumption of raw or undercooked seafood, particularly shellfish. It is the primary cause of Vibrio-associated food-borne illness in the United States and the leading cause of food-borne illness in Japan. The larger of its two chromosomes harbors a set of genes encoding type III section system 1 (T3SS1), a virulence factor present in all V. parahaemolyticus strains that is similar to the Yersinia ysc T3SS. T3SS1 translocates effector proteins into eukaryotic cells where they induce changes to cellular physiology and modulate host-pathogen interactions. T3SS1 is also responsible for cytotoxicity toward several different cultured cell lines as well as mortality in a mouse model. Herein we used RNA-seq to obtain global transcriptome patterns of V. parahaemolyticus under conditions that either induce [growth in Dulbecco's Modified Eagle Medium (DMEM) media, in trans expression of transcriptional regulator exsA] or repress T3SS1 expression (growth in LB-S media, in trans exsD expression) and during infection of HeLa cells over time. Comparative transcriptomic analysis demonstrated notable differences in the expression patterns under inducing conditions and was also used to generate an expression profile of V. parahaemolyticus during infection of HeLa cells. In addition, we identified several new genes that are associated with T3SS1 expression and may warrant further study.


Assuntos
Sistemas de Secreção Bacterianos , Perfilação da Expressão Gênica , Vibrio parahaemolyticus/crescimento & desenvolvimento , Vibrio parahaemolyticus/genética , Meios de Cultura/química , Células HeLa/microbiologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos
6.
Microbiology (Reading) ; 158(Pt 9): 2303-2314, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22767546

RESUMO

Vibrio parahaemolyticus pandemic serotype O3 : K6 causes acute gastroenteritis, wound infections and septicaemia in humans. This organism encodes two type III secretion systems (T3SS1 and T3SS2); host-cell cytotoxicity has been attributed to T3SS1. Synthesis and secretion of T3SS1 proteins is positively regulated by ExsA, which is presumptively regulated by the ExsCDE pathway, similar to Pseudomonas aeruginosa. Herein we deleted the putative exsE from V. parahaemolyticus and found constitutive expression of the T3SS1 in broth culture as expected. More importantly, however, in a cell culture model, the ΔexsE strain was unable to induce cytotoxicity, as measured by release of lactate dehydrogenase (LDH), or autophagy, as measured by LC3 conversion. This is markedly different from P. aeruginosa, where deletion of exsE has no effect on host-cell cytolysis. Swarming and cytoadhesion were reduced for the deletion mutant and could be recovered along with T3SS1-induced HeLa cell cytotoxicity by in cis expression of exsE in the ΔexsE strain. Loss of adhesion and swarming motility was associated with the loss of flagella biogenesis in the exsE-deficient strain. Mouse mortality was unaffected by the deletion of exsE compared with a wild-type control, suggesting that additional adhesins are important for intoxication in vivo. Based on these data, we conclude that ExsE contributes to the negative regulation of T3SS1 and, in addition, contributes to regulation of an adherence phenotype that is requisite for translocation of effector proteins into HeLa cells.


Assuntos
Autofagia , Aderência Bacteriana , Sistemas de Secreção Bacterianos , Células Epiteliais/microbiologia , Células Epiteliais/fisiologia , Vibrio parahaemolyticus/patogenicidade , Fatores de Virulência/metabolismo , Transportadores de Cassetes de Ligação de ATP , Animais , Proteínas de Bactérias , Modelos Animais de Doenças , Deleção de Genes , Teste de Complementação Genética , Células HeLa , Humanos , Locomoção , Camundongos , Análise de Sobrevida , Vibrioses/microbiologia , Vibrioses/patologia , Vibrio parahaemolyticus/genética , Fatores de Virulência/genética
7.
Appl Environ Microbiol ; 78(9): 3492-4, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22389365

RESUMO

We employed a heterologous secretion assay to identify proteins potentially secreted by type III secretion systems (T3SSs) in Vibrio parahaemolyticus. N-terminal sequences from 32 proteins within T3SS genomic islands and seven proteins from elsewhere in the chromosome included proteins that were recognized for export by the Yersinia enterocolitica flagellar T3SS.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sistemas de Secreção Bacterianos/genética , Yersinia enterocolitica/genética , Yersinia enterocolitica/metabolismo , DNA Bacteriano/química , DNA Bacteriano/genética , Expressão Gênica , Dados de Sequência Molecular , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Análise de Sequência de DNA , Vibrio parahaemolyticus/genética , Vibrio parahaemolyticus/metabolismo
8.
Infect Immun ; 77(8): 3181-7, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19487473

RESUMO

Multiple bacterial and protozoal pathogens utilize gene conversion to generate antigenically variant surface proteins to evade immune clearance and establish persistent infection. Both the donor alleles that encode the variants following recombination into an expression site and the donor loci themselves are under evolutionary selection: the alleles that encode variants that are sufficiently antigenically unique yet retain growth fitness and the loci that allow efficient recombination. We examined allelic usage in generating Anaplasma marginale variants during in vivo infection in the mammalian reservoir host and identified preferential usage of specific alleles in the absence of immune selective pressure, consistent with certain individual alleles having a fitness advantage for in vivo growth. In contrast, the loci themselves appear to have been essentially equally selected for donor function in gene conversion with no significant effect of locus position relative to the expression site or origin of replication. This pattern of preferential allelic usage but lack of locus effect was observed independently for Msp2 and Msp3 variants, both generated by gene conversion. Furthermore, there was no locus effect observed when a single locus contained both msp2 and msp3 alleles in a tail-to-tail orientation flanked by a repeat. These experimental results support the hypothesis that predominance of specific variants reflects in vivo fitness as determined by the encoding allele, independent of locus structure and chromosomal position. Identification of highly fit variants provides targets for vaccines that will prevent the high-level bacteremia associated with acute disease.


Assuntos
Anaplasma marginale/genética , Anaplasma marginale/imunologia , Anaplasmose/imunologia , Anaplasmose/microbiologia , Antígenos de Bactérias/genética , Conversão Gênica , Seleção Genética , Animais , Antígenos de Bactérias/imunologia , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/imunologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/imunologia , Bovinos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...